
 1

General Interface Description of Websites using CLICK
and UIML

Yogita Bhardwaj, Muhammad Abu-Saqer, Manuel A. Pérez-Quiñones
Department of Computer Science,

Virginia Polytechnic Institute
Blacksburg, VA 24060

yogitab@vt.edu, mabusaqe@vt.edu, perez@cs.vt.edu

ABSTRACT
This paper explores the domain of programming paradigm
for Multi-Platform User Interfaces using XML based
languages. The main focus of this work is User Interface
Markup Language (UIML), an XML based language for
describing user interfaces in a platform-independent
manner. We have explored the capabilities of UIML as an
interface description language for describing interactive
websites. We have selected an end-user web programming
tool called CLICK, which also uses an XML based
interface description for the websites created through it. We
have analyzed both the representations and devised a
conversion process from CLICK XML to UIML. We have
found that UIML is expressive enough to represent
applications built using CLICK. UIML provides various
benefits over the interface description generated by CLICK
especially that of facilitating the development of web based
interfaces for multiple platforms through CLICK.

Author Keywords
UIDL, CLICK XML, UIML, generic UIML vocabulary.

INTRODUCTION
With the increase in number of computing platforms being
commonly used by people, the task of building a user
interface for an application for all of these platforms
becomes very complex. Apart from being complex, the
process is somewhat redundant since the conceptual
interface remains the same but presentation and
implementation changes with each platform. Researchers
have tried to solve this problem by expressing the user
interface at various levels of abstraction. Various markup
languages have been created to represent the user interfaces
at these different levels of abstractions. One such language
is the User Interface Markup Language (UIML). UIML is a

meta-language that requires an XML specification (or a
vocabulary) to provide meaning to the parts used in the
description [1]. The language itself is completely
independent of any metaphor and just introduces a basic set
of tags for defining a user interface structure. This facilitates
writing the specification once and rendering it multiple
times on different platforms based on different vocabularies.
This single authoring approach goes a long way in
alleviating the plight of a UI developer developing
interfaces for multiple platforms. We have derived the
motivation for our work from this powerful concept. We
wanted to study to what extent UIML is helpful for
developing interactive web based interfaces.
Our target problem domain is an end-user web
programming tool called CLICK (Component-based
Lightweight Internet-application Construction Kit). CLICK
is a research project, at being developed at Virginia Tech,
oriented towards providing a toolkit to create interactive
websites with most commonly used features like form
validations, database connectivity of the form fields etc. An
XML representation is inherently platform independent and
allows for easy parsing and modification to data. For these
reasons, representing the interface in an XML document
and providing code generator based on that was the natural
choice for CLICK. This XML captures various web pages
in a web application and various web interface widgets and
their behavior that goes on each page. CLICK is a project at
the very early stages of its development and does not intend
to make available its XML based representation for
manipulation directly by end users yet.
The question that would now arise is that why this tool
needed to create its own XML to represent a web interface.
If it is simply an oversight of already existing XML based
interface description languages, then can UIML serve the
same purpose as this custom XML? We tried to answer this
question by converting CLICK XML to UIML and thus
actually developing an interactive website, which was
created using CLICK, again through UIML. Our
expectation was that through this process we would be able
to uncover any hurdles that UIML may present while
developing basic interactive websites. Of course, a benefit
that CLICK gets from this is that the UIML representation
of a web interface built in CLICK can then leverage the

 2

methodology to create multi-platform user interfaces
through UIML [3] for the same application.

RELATED WORK
There has been significant research in the area of device
independent UI development and using XML based
languages to represent the UI. These languages are
commonly called User Interface Description Languages
(UIDLs). The goals for these UIDLs have been enumerated
in [4]. These efforts are mainly oriented towards providing
a way to separate data from presentation so that the
presentation of the interface can be easily adapted to
changes in platform where these applications are deployed.
XForms [11], based on the same goal, is a W3C effort
which introduces device independence for form-based web
interfaces. This is very restrictive since not all interfaces
can be form based and CLICK itself will expand its domain
from just forms to letting people create interfaces with
dynamic text e.g. VT CS faculty/staff directory. Several
different UIDLs have been proposed like USIXML [4],
XIML [6], TERESAXML [5] and all of them are essentially
based on the requirement of being able to start a user
interface description at a conceptual and abstract level,
represented usually by a task model, and then moving step-
by-step towards more concrete representations and the final
UI for a target platform.
These languages follow the model-based interface
development approach [7] where task modeling is the initial
step. It requires thinking of interface definition process in
terms of user tasks, dialog, domain objects and
presentation. These languages represent entire development
lifecycle unlike UIML which starts at a more concrete level,
i.e. with a modality dependent generic vocabulary. With the
model based approach, the interface specification can be
created at any level and can either be abstracted into a more
abstract specification or reified into a more concrete
specification [4]. RIML [10], Renderer-Independent
Markup Language, is another effort towards single
authoring which addresses the layout and pagination issues
across different platforms. A comprehensive evaluation of
all the XML-based languages is presented in [8, 9]. The
languages are mostly compared on the criteria of what
models these languages support, how well they separate
data and presentation, flexibility, universal usability and
ease of use among others. Clearly, not any single language
appears to be a winner or a comprehensive solution to all
issues.
Ali et al. suggest that creating user interfaces with UIML
using platform specific vocabularies is still a very
cumbersome process due to limited commonality among
these vocabularies [2]. This contradicts the original concept
of device independent authoring, since the author requires
knowledge of both UIML and the target language. A
solution to this problem is the use of a generic vocabulary.
A generic vocabulary includes a set of generic elements that
can be used for any platform. An important step identified
in the model based design process is a task model which is
at an abstraction level higher than that is currently possible

with UIML. Using a task model in conjunction with UIML
[3] will facilitate the development of multi-platform user
interfaces as a task model can capture conceptual
information about the interface that remains the same across
multiple interfaces.

SURVEY OF WEB DEVELOPMENT PRACTICES
The domains of exploration for this project were CLICK
and UIML that are research projects whose user base is still
very limited. For this reason we limited our survey to that
of web development practices. The goal of our survey was
to find out how web developers think about their web
applications in terms of code, layout and usability. We also
wanted to study practices followed for testing the
application. The survey was conducted in the form of semi-
structured interviews. We interviewed 17 computer science
graduate students, out of which 3 have been professional
developers. As the participants rated themselves on their
experience with web programming, we had a sample set of
3 beginners, 8 intermediate and 6 expert developers in the
field.
Our results were not very surprising and most of the web
developers are aware and do follow best practices. 11 of
these participants expressed that usability and look and feel
of the websites were of primary concern to them. This
suggested that a website created (for the desktop platform)
using a WYSIWYG tool should always look the same no
matter how the rendering is done by the backend and must
preserve the look and feel as much as possible. On the other
hand, we found that developers had the opinion that data
and logic would not change when moving from one
platform to another, so it should be ported automatically
and they would be willing to customize the interface for
each platform.
Our findings related to web programming styles suggested
that our participants prefer following best practices when
developing web applications. 12 of the participants
mentioned that they mainly do styling of their websites
using the style sheets because it gives good modularity and
allows easy change. This suggests that ideally an interface
development tool for websites should create style sheets for
all the style related information. CLICK generates the code
in such a manner that the layout and client-side and server-
side logic are all combined. But, 12 of the participants said
that they would always separate client side and server side
code and only 3 of these participants were aware that even
client side and server side code could be combined.
Finally we asked our participants, how do they generally
test their websites? 9 participants mentioned that the look
and feel of the website are their top priorities, e.g. the
information should be correct, design and colors should
look good, links should be clickable and should direct to
correct pages. 4 of these participants mentioned using
usability guidelines to test the work flow. 2 participants
mentioned that they also test how their websites look in
different browsers. All the participants mentioned that for
dynamic forms they test for every possible value that their

 3

application allows and disallows so that the behavior is as
they expected.
We observed that the fields of interest, of the participants
influence their responses. Those participants who prefer to
write backend logic were more concerned about the
behavior of an application. On the other hand, the
participants who had the knowledge of usability principles
focused more on usability of the websites. Of course,
neither of the two aspects can be weighed lesser than the
other. But the guidelines we derived from this survey were
to preserve the layout and the look and feel to the maximum
extent and to generate style sheets for the style information
for any website and finally to provide clean separation
between the client-side and server-side behavior of any
website.

UIML OVERVIEW
UIML is modeled by a meta-interface model [13] which
separates out interface description i.e. <interface>,
underlying application logic i.e. <logic> and specification
of actual rendering to a particular device i.e.
<presentation> for any application. <interface> section is
composed of four main subsections. <structure> section
refers to what interface elements the UI is comprised of.
Each element is represented with <part> tag and the type
of this part, “class”, is determined by the vocabulary used.
E.g. a label part may have a class JLabel when we use
JAVA Swing vocabulary. <style> section refers to
presentation style e.g. fonts, colors etc., specified as a set of
<property> tags on a part. <content> refers to text or
images that go on a UI. Finally, the <behavior> section
specifies as a set of conditions and actions performed when
these conditions are met. The <behavior> section specifies
the interactive behavior of any interface.

CLICK XML OVERVIEW
CLICK XML specifies an entire web application in one
XML file. Each application with root tag, <app> is a set of
<page> tags which refer to each page in the web
application. On every page we can define some
<component> tags which are the web interface elements.
CLICK XML does not separate style, content or behavior.
Inside the <component> tag all the style, content and
behavior information is embedded. E.g. location of the
component on the screen, text associated with it and
interaction data like input constraints, action on click or
database connections. Equivalent to a “class” in UIML,
CLICK XML interprets each component by its “type”. E.g.
for a label, the type “htmlText” is used and for a textbox
type “inputText” is used. These types decide how the
component is rendered in HTML.

MAPPING CLICK XML TO GENERIC UIML
The need for starting an interface specification at the level
of a generic UIML for efficient interface development has
already been identified [2]. So, we first map the CLICK
XML representation to the generic UIML vocabulary. An
official specification of a generic UIML is not yet available
so we base our discussion on the concept of generic

vocabulary as mentioned in [2, 3]. We can suitably adapt to
any changes in the generic vocabulary provided the inherent
model of UIML does not change. This generic vocabulary
can then be mapped to platform specific vocabularies to
obtain interfaces for another platform. The process of
mapping is shown in Figure 1. An important aspect is that
of device families, which refers to a group of platforms
with similar layout features. E.g. a desktop family includes
all the desktop based interfaces created with different UI
toolkits like HTML or JAVA Swing. In order to avoid
having to create one generic vocabulary for all the
platforms and making it unreasonably complex and bloated,
several generic vocabularies are created. For the purpose of
our discussion we consider a generic vocabulary for GUIs
[2]. In the following sections we discuss how elements from
CLICK XML can be mapped to each of the main elements
of UIML.

Interface

CLICK XML represents an entire website as an application
that is a collection of related pages. Whereas a single
document in UIML is really one single interface which
maps to one single web page. This approach is much more
scalable when the number of pages in a website grows. On
the other hand, CLICK XML is a nice bundle of related
web pages with one of the pages among these being a home
page. In UIML we can specify one main <structure>, as
explained below, and specify a <restructure> element
which dynamically changes the interface based on certain
events and can be thought of as analogous to switching
between pages on a certain condition. We focus on one
single page such that the interface for each page in CLICK
XML can be represented by the <interface> element in
UIML.

Structure
Structure refers to the collection of widgets that make up an
interface and their relationship to each other, e.g. spatial
relationship between elements in GUI. These widgets
represented by a <part> element are analogous to the
<component> element in CLICK XML. Each <part> is
classified in a particular category by part-class in UIML
and type in CLICK XML. CLICK XML generates code in
HTML 4.0 and the application logic in PHP. When using
HTML 4.0 vocabulary of UIML we can create a structure in
UIML which is exactly similar to CLICK XML. E.g. a
component in CLICK of type “inputText” can be
represented by a part in UIML of class “GSLTextRegion”
representing a generic text field.

Figure 1. Mapping of CLICK XML to UIML

CLICK
XML

Generic
UIML

Platform Specific
UIML 1

Platform
Specific UIML

2

 4

Style
In UIML style information is specified as a set of
<property> tags. Between CLICK XML and generic UIML
the style information maps completely. E.g. attributes X, Y
for location can be specified as a Location property on a
UIML part. The benefit UIML provides is that the style
section is separated out from the general structure. The
resulting interface description is much more structured and
less cumbersome to adapt to changes. From our survey we
had found that people prefer all the styling to be done by
style sheets so that their applications are modular. The style
section in a UIML document is analogous to style sheets for
a web interface. Although current renderers do not leverage
this feature to auto-generate the style sheets but it is
definitely a possibility.

Content
Content in the UIML document refers to all the text, images
and sounds used within an interface document. Mapping
between content from CLICK XML to UIML is
straightforward just like style. Content related to each of the
components in CLICK XML is embedded within the
<component> node. This content can be easily mapped to
the <content> section in a UIML document. For the
purpose of internationalization we can simply replace text
strings in CLICK XML by another language. But, the
advantage UIML provides is that, due to the clean
separation of content from structure, the content section can
easily be replaced by another equivalent section. We have
the ability to specify multiple content sections in one
document and selectively render it based on the target
language. A flip side of representation of content in CLICK
XML is that the text content in CLICK XML is stored as
straight HTML because of the inability of CLICK XML to
provide a markup equivalent to HTML, which ties it closely
to one particular platform. So, the CLICK XML cannot
directly map to other platforms

Behavior
The behavior section defines the interaction between the
user and the interface as a set of rules where a certain action
is performed whenever a particular condition is met. This is
the most important section with respect to the interactive
web based interfaces. In a generic UIML behavior can be
specified independent of the underlying logic which is
closely tied to a platform. Behavior section in UIML simply
specifies what function to call on certain event. This
function is simply left as a stub to be filled in when
platform specific UIML is specified in the <logic> section.
There are three main interaction features that can be added
to the interactive websites through CLICK. These are:
database connectivity of the input form fields, client side
input validations, and conditional actions on button click.

UIML does not have a specific data model that specifies
what data an interface collects or presents. When specifying
database connectivity through CLICK XML, each of the
components, that require a user input, can be attached to a

database field (the database being a default application
database), and can save the value entered to this database
field on a button click. CLICK XML specifies this
connection by adding an attribute “dbFieldName”. To do
this in UIML we need some external function. This can be a
function call in UIML which essentially looks like the code
in Figure 2. Function calls in UIML are always called on
triggering of an event, e.g. a button click, and database
connectivity is persistent information. Another alternative is
to leverage the <logic> section where the actual interface
to application logic is defined. We can use the cleaner data
model given by XForms for our purpose here and use it as a
part of our application logic.

An important aspect to be considered here is that CLICK
XML simply says that an input field is saved to a certain
database field or can specify a certain text on the web page
comes from a database field. It completely hides what the
data source is and how it accesses the data. This becomes
more important when we talk about developing multi-
platform user interfaces.

Client side input validations are easier to specify. CLICK
XML specifies an input constraint on an input field by the
type of constraint e.g. not empty or between 2 and 15
characters, and a message that is popped up in case the
constraint is not specified. In the code generated by CLICK
this translates into a Javascript validation function. This can
be represented very well as an external Javascript function
that can be specified in UIML and triggered off on a button
click. An example is shown in Figure 3 and 4. Javascript
logic was imported from CLICK directly without changes.
HTML renderer by Harmonia Inc. renders these client-side
Javascript functions in the same file as the HTML front end
and leaves out all the backend processing logic in a separate
server-side file. This is exactly how developers who
participated in our user survey expect their application code
to look like.

Finally, a complex interaction behavior in CLICK can be
specified based on various values entered by a user in a
form. For example, if the email field is filled up by the user,
only then an email is sent to that address as shown in Figure
5 and 6. UIML provides a means to specify complex logic
conditions as well. An element called <op> represents a
general set of logical operators. With this element basic
logical conditions (less than, greater than, equal, not equal,
and, or etc.) may be expressed along with the ability to
structure complex conditions involving multiple values
[12]. We can thus achieve the complex conditional logic

<call name=”connectInputToDatabase”>
 <param name=”inputField”>firstName</param>
 <param name=”dbField”>dbFirstName</param>
</call>

Figure 2. External Logic function for database connection

 5

CLICK implements. At this stage of creating a generic
UIML description we still leave out the underlying logic
description, i.e. the external logic functions, as stubs which
need to be described at the platform specific UIML level.
Figure 7 shows an abridged XSLT script for transforming
CLICK XML to a generic UIML.

Overall, while mapping the behavior section to generic
UIML we were able to capture direct meaning of the tags in
CLICK XML but we could only capture the inferred
meaning. For example as described above, most of the
interaction behavior specified by CLICK can be represented
in UIML using external logic function. We would need to
rely on the developer to infer the correct requirements for
these functions through function names and input
parameters.

<behavior><rule>
 <condition>
 <event class="OnClick" part-name="submit"/>
 </condition>
 <action>
 <call name="form.isEmpty">
 <param name="name">firstName</param>
 <param name="errorMsg">First Name cannot
 be left empty</param>
 </call>
 </action>
</rule></behavior>

Figure 4. External Logic function for input validation.

Figure 5. Specifying conditional action through CLICK

<actionRule>
 <conditions connector="and">
 <condition fieldId="sendEmail" operator="Yes" />
 </conditions>
 <actions>
 <actionSendEmail from="someone@somewhere.com"
to="yogitab@vt.edu" subject="Hi"> <![CDATA[
Message]]></actionSendEmail>

 </actions>
</actionRule>

<condition>
 <op name="and">
 <event class="buttonClicked" part-name="Submit"/>
 <op name="equal">
 <property name="value" part-name="sendEmail"/>
 <constant value="Yes"/>
 </op>
 </op>
</condition>
<action>
<call name="form.sendEmail">
<param name="from">someone@somewhere.com</param>
<param name="to">yogitab@vt.edu</param>
 ...
</call>
</action>

Figure 6. Equivalent representation of Figure 5 in UIML

<inputConstraint type="notEmpty" min="" max=""
acceptEmpty="0">
 First Name cannot be left empty
</inputConstraint>

Figure 3. Specification of input validation in CLICK.

 6

PLATFORM SPECIFIC RENDERING
We discussed in the previous section, the creation of a
generic UIML from CLICK XML. Our final step was to
map the generic UIML to a platform specific UIML, add
platform specific logic functions and then finally render it
using the renderers provided by Harmonia Inc. We picked
up the HTML 4.0 vocabulary generate again the original
website created by the end user with same the behavior and
the look and feel. Converting generic UIML to platform
specific UIML is another simple XSL transformation.
However, the process of going from generic UIML to a
platform specific UIML is not entirely automatic but a
developer’s intervention is required in order to achieve best
quality results. Achieving the same look and feel of the
original website with the HTML 4.0 vocabulary based
UIML was possible. These extra properties we added were
mainly about converting the location property from generic
UIML to part class “DIV” with “style” property specifying
location, so as to achieve exact placement of components
on screen in an HTML document.

Implementation of the behavior for our target platform was
limited by the freely available renderer for HTML 4.0
vocabulary by Harmonia Inc. as it adhered to UIML 2.0
specifications and we had identified several powerful
features in UIML 3.0 that were relevant to our topic e.g.
<restructure> and <op>. CLICK XML writes the backend
logic in PHP, where as the current renderers work best for
JAVA servlets based backend logic. Figure 8 shows an

example of a guestbook application created using UIML
which was originally developed using CLICK. This
application saved the data to the application database and
was directed to a ‘thank you’ page. First could not be left
empty. All the input validations and form submit actions
were specified as actions to be performed on the “Submit”
button click in UIML. This application preserved the look
and feel and input validations that were initially generated
by CLICK. The input validation logic was borrowed from
CLICK. We wrote the backend logic for this application
using JAVA servlets. Saving form fields into a database
was not directly derived from the UIML and we have to
write a function tailored for this application since we could
not specify what data is collect from the form. The behavior
of the application was captured in the generic UIML as
stubs. The only task left for this stage was to appropriately
fill those stubs.

We also tried to convert the generic UIML to the JAVA
Swing platform. Just as HTML 4.0 platform, this was trivial
as well but modifications were required to get the desired
layout. We also had to customize the logic section to tailor
it for JAVA format. Figure 9 shows the JAVA based
equivalent of the web application developed in CLICK.

<xsl:template match="app/page[@id='Page']">
<uiml><interface><structure>
<part class="GTopContainer">
 <xsl:attribute name="name">
 <xsl:value-of select="@id"/>
 </xsl:attribute>
<part class="GArea">
 <xsl:attribute name="name">
 <xsl:value-of select="@id"/>Form</xsl:attribute>
<xsl:apply-templates select="component"/>
</part>
</part>
</structure></interface></uiml>
</xsl:template>
<xsl:template match="component">
<part>
<xsl:attribute name="name">
 <xsl:value-of select="@id"/></xsl:attribute>
<xsl:attribute name="class">
<xsl:choose>
 <xsl:when test="@type = 'htmlText'">GLabel</xsl:when>
 <xsl:when test="@type = 'button'">GButton</xsl:when>
 …
</xsl:choose>
</xsl:attribute>
<style>
<property name="location">
 <xsl:value-of select="@x"/>,<xsl:value-of select="@y"/>
</property>
…
</style>
</part>
</xsl:template>

Figure 7. Abridged XSLT script for CLICK XML to
generic UIML

Figure 8. HTML 4.0 based interface rendered
by the HTML renderer by Harmonia Inc.

Figure 9. JAVA Swing based interface rendered
by the JAVA renderer by Harmonia Inc.

 7

A question that could arise here is if it is simply a matter of
code generation, we can simply take the CLICK XML and
implement a new code generator around it which can
provide any platform specific interface then why use
UIML. As we have discussed already, in the process of
mapping CLICK XML to a generic UIML we gain a lot of
advantages in terms of clean design and scalable
architecture. But the most significant aspect is the concept
of vocabularies which makes selective rendering of each of
the components possible. For each of the parts in the UIML,
we can specify what class it maps to in a vocabulary and
changing rendering of the part is simply changing its class.
Similarly if the class is not supported by the vocabulary the
part is not rendered at all. In such a case platform specific
vocabularies provide much more flexibility and control
over a black box code generator.

CONCLUSION
Our work demonstrated the capabilities of UIML for
specifying interface for an interactive website created using
an end-user web programming tool, CLICK. From our user
survey we derived certain guidelines on the design of the
backend code generated by both of our automated tools. We
found that with UIML, leaving out the limitations of
renderers freely available, it is possible to generate code for
a web application that developers would prefer to work
with. This included generating style sheets, separation of
client side and server side logic and finally preserving of
the look and feel of an interface. Also, the code generated
by CLICK is undergoing a lot of changes and has not yet
been evaluated against web programming best practices.
Due to these reasons we could not evaluate the benefits of
converting CLICK XML to UIML in terms of the code
generated. UIML is a research project and evaluation of this
language itself is not in the scope of this project. Although
the conversion process from CLICK XML to UIML is
tedious it is entirely possible to preserve the interface look
and feel and interaction behavior from one representation to
another. We also identified several advantages an interface
description using UIML provides.

FUTURE DIRECTIONS
We were able to map the CLICK XML to a generic UIML
and then from the generic UIML to HTML 4.0 specific
UIML and finally to the code. While it is still possible to
map this generic UIML to a PDA platform or WML
platform, there are issues related to interface migration
which make this process much complex. Also, a generic
vocabulary is most efficient when this generic vocabulary
spans across a family of devices which have the similar
layout features e.g. the desktop family, PDA family, WML
family [2]. If we try to merge varied platforms we end up
with a bloated generic UIML. The answer then would be to
raise an abstraction level beyond the device differences. A
task model can be used as a starting point for the MPUI
development [2] such that it captures conceptual
information about the interface which remains same across
multiple interfaces. We would like to reverse engineer the

task model of a website from the CLICK XML. Given a
task model in the CTT [5] notation we can follow the
approach devised by Ali et al [2] to generate interfaces for
multiple platforms using CLICK.

REFERENCES
1. Abrams, M., Phanouriou, C., UIML: An XML Language
for Building Device-Independent User Interfaces. in
XML'99. 1999. Philadelphia.

2. Ali, M.F., Abrams, M., Simplifying construction of
multi-platfrom user interfaces using UIML. in European
Conference UIML 2001. 2001. Paris: Harmonia & Aristote.

3. Ali, M.F., Pérez-Quiñones, M.A., Abrams, M., and Shell,
E., Building Multi-Platform User Interfaces with UIML. in
CADUI. 2002. France.

4. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., Florins, M., and Trevisan, D., USIXML: A User
Interface Description Language for Context-Sensitive User
Interface. in Developing User Interfaces with XML:
Advances on User Interface Description Languages, a
Satellite Workshop of Advanced Visual Interfaces. 2004.
Gallipoli, Italy, 55-62

5. Paternò, F., Mancini C., Meniconi S. ConcurTaskTrees:
A Diagrammatic Notation for Specifying Task Models. in
Interact. 1997. Sydney: Chapman&Hall, 362-369

6. Puerta, A., Eisenstein, J., XIML: A Universal Language
for User Interfaces. 2001, RedWhale Software.

7. Puerta, A.R., A Model-Based Interface Development
Environment. IEEE Software, 1997, 40-47.

8. Souchon, N., Vanderdonckt, J. A Review of XML-
Compliant User Interface Description Languages. in DSV-
IS. 2003. Berlin: Springer-Verlag, 377-391

9. Trewin, S., Zimmermann, G., and Vanderheiden, G.
Abstract User Interface Representations: How well do they
Support Universal Access? in CUU. 2003. Vancouver,
British Columbia, Canada, 77-84

10. Ziegert, T., Lauff, M., Heuser, L, Device Independent
Web Applications - The Author Once - Display Everywhere
Approach. ICWE, 2004, 244-255.
11. World Wide Web Consortium, "XForms - The Next
Generation of Web Forms,"
http://www.w3.org/MarkUp/Form
12. UIML3.0 Draft specification,
http://www.uiml.org/specs/uiml3/DraftSpec.htm
13. Eaton, C. and Memon, A.M., Evaluating Web Page
Reliability across Varied Browsing Environments. in The
15th IEEE International Symposium on Software Reliability
Engineering (ISSRE'04), (Saint-Malo, Bretagne, France,
2004).
14. SELVAKUMAR, M. Automated testing for Web
applications. Dr. Dobb's Journal of Software Tools 24, 5, 24
(5). 88, 90, 92, 95-96, 1999.

 8

15. Sampath, S., Mihaylov, V., Souter, A. and Pollock, L.,
“Composing a Framework to Automate Testing of
Operational Web-Based Software,” Proceedings of the 20th
IEEE International Conference on Software Maintenance
(ICSM'04), Chicago, Illinois, 2004.

16. XMLUnit - JUnit and NUnit testing for XML,
http://xmlunit.sourceforge.net
17. XsltUnit, http://xsltunit.org/
18. HttpUnit, http://httpunit.sourceforge.net/

